Kernel Feature Analysis for Computer-Aided Detection of Polyps in CT Colonography

نویسندگان

  • Yuichi Motai
  • Janne Näppi
  • Hiroyuki Yoshida
چکیده

A fast kernel feature analysis is presented for 3-dimensional computer-aided detection of colonic polyps on CT colonographic images. The proposed algorithm, called Accelerated Kernel Feature Analysis (AKFA), extracts salient features from a sample of unclassified patterns by use of a kernel method. Unlike other kernel-based feature selection algorithms, AKFA iteratively constructs a linear subspace of a high-dimensional feature space by maximizing a variance condition for the nonlinearly transformed samples. The resulting linear subspace can then be used for defining efficient data representations and pattern classifiers. Numerical experiments based on a feature space, generated from 292 CT colonographic volume scans including 131 polyps on CT colonographic images, showed that AKFA generates concise feature representations, and it yields similar classification performance to that of Kernel Principal Component Analysis (KPCA) whereas AKFA is computationally much faster than KPCA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients

Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...

متن کامل

On-line versus off-line accelerated kernel feature analysis: Application to computer-aided detection of polyps in CT colonography

A semi-supervised learning method, the on-line accelerated kernel feature analysis (Online AKFA) is presented. In On-line AKFA, features are extracted while data are being fed to the algorithm in small batches as the algorithm proceeds. The paper compares and contrasts the use of On-line AKFA and Off-line AKFA in CT colonography. On-line AKFA provides the flexibility to allow the feature space ...

متن کامل

A Note on Feature Selection for Polyp Detection in CT Colonography

In this paper we describe a computer aided detection (CAD) algorithm for robust detection of polyps in computed tomography (CT) colonography. The devised algorithm identifies suspicious polyp candidate surfaces using the surface normal intersection, Hough transform, 3D histogram analysis, region growing and a convexity test. From these detected surfaces we extract statistical and morphological ...

متن کامل

Computer-aided diagnosis scheme for detection of polyps at CT colonography.

Colon cancer is one of the leading causes of cancer deaths in the United States. However, most colon cancers can be prevented if precursor colonic polyps are detected and removed. An advanced computer-aided diagnosis (CAD) scheme was developed for the automated detection of polyps at computed tomographic (CT) colonography. A region encompassing the colonic wall is extracted from an isotropic vo...

متن کامل

Machine Learning in Computer-Aided Diagnosis of the Thorax and Colon in CT: A Survey

Computer-aided detection (CADe) and diagnosis (CAD) has been a rapidly growing, active area of research in medical imaging. Machine leaning (ML) plays an essential role in CAD, because objects such as lesions and organs may not be represented accurately by a simple equation; thus, medical pattern recognition essentially require "learning from examples." One of the most popular uses of ML is the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007